2015年10月02日

AIの健全な産業応用を考える

Dr.ノムランのビッグデータ活用のサイエンス」連載(初出:日経ビジネスOnline)の22回目です。

AIの健全な産業応用を考える

人工知能ブーム再燃の真実(その7)


 この連載はもともとビッグデータ分析の科学ということでちょうど1年前にスタートしました。多忙なITベンチャー経営の傍ら1年間、1度も欠かさずに書けたことに我ながら驚くとともに、ご協力いただいた方々、お取引先やメタデータ社の役員、社員には深く感謝しております。

 今回は「なぜ人工知能の話題が最近は多いの?」という疑問にシンプルな回答を書いてみたいと思います。

企業のニーズ:「データそのものはいくらでもあるし、収集や、ある程度の整備のめどは立った。でも最終的に経営改善、業績改善につながる分析結果を導き出すのに、生のビッグデータに人間がいきなり徒手空拳で(手作業で)臨んでも新たな知見など出てこない。そこで、コンピュータらしい力技を発揮して、従来は解析困難だったタイプのデータを、人間が見て何か発見したり仮説検証(定性的・定量的)したりするのを支援してほしい。」

 ビッグデータのブームが一段落したらやはり、人間技では対応できない解析、分析がネックになった。だから、強力な「弱いAI」が必要になった。そのため、人工知能への潜在的な期待が高まり、それに応えるソリューションも出てきたことで(たとえばVoC分析のこれ)、必然的にさまざまなメディアでも取り上げられるようになった、と考えていいのではないでしょうか。

 「従来は解析困難だったタイプのデータ」としては、非数値系のデータ、例えば不定形のテキスト(自然言語)のデータとか静止画像、動画像、音声信号の生データがあります。

 画像は、撮影・編集日時などの5W1H情報や映っている内容についてキーワード入力されたメタデータの類ではなく、画像そのもののことです。これらを扱うには、文章の構文解析、それを超えた意味解析や文脈解析、「常識」知識に照らした推論などが必要になったり、画像の膨大なピクセル情報から映っている人物や事物、背景映像が何であるか、いわばどんな意味内容を含んだ映像であるかを画像認識したりしなければなりません。両方とも、広い意味の「パターン認識」ととらえることができます。

「パターン認識」は人工知能の目や耳

 「パターン認識」、あるいはもっと広く「認識」というのは、「学習」「思考」とは異なるものです。ですが、通常のコンピュータ処理とは異質の、人工知能と呼んでも良さそうな感じがします。人間にしかできないというよりは、目や耳を備えて、危険を認識できる動物全般の能力といって良いでしょう。

 入力された生データは、画素数や文字数で数えると膨大な量になります。しかし「猫の尻尾が映っている」という認識結果(人によっては「画像の意味を理解」したと解釈するかもしれません)は、猫という記号と、その一部、尻尾という記号だけという、極く僅かな情報量(Byte数)に変換されます。

 このように「認識」あるいは「理解」するために、脳内の、さまざまな画像の特徴を記憶したデータベースと、その概念を理解した結果を格納した「辞書」のようなものを使っていると思われます。さらに、猫の尻尾に似ているけれど違うものについて、過去遭遇した場面、出来事の経験に照らして、例外扱いしたりすることもあるように思えます。

 「パターン認識」は、30年以上前から産業界で実用化されています。有名な応用の一つに、NECがいち早く手がけ、今やおそらく全世界の警察が活用している、指紋照合システムがあります。

 犯行現場などで見つかった指紋を、ホストコンピュータのデータベースに格納されている何千万人分もの両手(や両足?)の指紋と、あっという間に照合してしまいます。人間技ではない超高速、ビッグデータ対応が最初から実現していますので、強力な「弱いAI」ということができます。

 何十年も前から実用化されている、あまり有名でない、地味な応用に、工場で生産される薬の錠剤の形を人間に代わって「見て」、規格外の形状のものを排除するためのビデオ・センサと呼ばれるシステムがあります。音声認識、文字認識の世界では、元NEC研究所から九州大学教授に転出された迫江博昭博士が、DPマッチングという手法で、認識対象が、ひな形(「辞書」に入っている単語音声信号や文字画像)から、「変形」(音声の伸び縮みや画像の歪みなど)しているズレを吸収するアイディアを出し、当時の低速な計算機でもパターン認識ができるよう、郵便局用の音声認識機械や、手書き文字認識のシステムを実用化しました。

 人工知能という言葉は、専門家の間でも定義がはっきりしていません。個人的には、パターン認識は「学習」や「思考」、「感情」、「言語理解に基づく本当の対話能力」などとは違うので、人工知能からはずしたいと考えています。そこで、本セクションの小見出しは、「『パターン認識』は人工知能の目や耳」としました。

 だいぶ以前から実用化されているけれども、指紋や錠剤の形、手書き数字(郵便番号など)など、かなり専門特化した応用事例が多かったといえます。

 昨今は、人型ロボットが市場に出てきたことなどにより、汎用性の高いパターン認識へのニーズは高まりつつあるように思います。しかし、その場合でも、どんなものを見分け、聞き分ける必要があるのか、そのために、どれくらいの精度が必要なのかについて、いくつかのケーススタディについて具体的に見積もるべきだと思います。

 そして、現在の技術で、コストに見合う投資額で済むかどうか、きちんと見極めること。人工知能搭載だから賢い、などと思考停止したやり方では、本来うまくいくはずの応用でも失敗してしまいますので、くれぐれも注意したいところです。

社会の重要な裏方としてのAI

 前節で、警察署や郵便局、工場という応用現場に言及しましたので、「社会の重要な裏方」として機能するAIについて、少し考えてみたいと思います。

 2014年度に放映された、放送大学の専門科目現代化学第6回「機能性物質の化学1 〜物質の機能とは」(担当講師石井菊次郎学習院大学教授)では、冒頭で、撥水性繊維でできた布にコーヒーをこぼして見せて視聴者を驚かせた後、「社会の重要な裏方」として働く物質として次が挙げられています:

  • 接着剤・塗料など(ニカワからエポキシ樹脂、低融点ガラスへ)
  • 表面処理剤・潤滑油など
  • 印刷インクなど

 なるほど確かに、「日本の主要な塗料メーカー、潤滑油メーカー、インキメーカーを3社ずつ挙げなさい」と言われて即答できる人は少なさそうです。ですが、これらの製品が住まいや乗り物、工作機械、そして書籍や、印刷技術で作られるファッション・アイテムなどを支える、必要不可欠の存在であることに異論ある方は少ないでしょう。

  物質、材料を「部品」ととらえ、「社会の重要な裏方」として働くハイテク部品の例を考えてみると、日本企業しか作れないといわれていた部品の例として、

  • エンジン内部の超高温でも何年も劣化しないバネ
  • 一度締めたら絶対緩まないネジ

などが思い浮かびます。この他にも、日本の中小企業が世界需要をほぼ独占しているようなハイテク部品には枚挙にいとまがないでしょう。

 上記のような材料技術、部品製作技術が不断に改良され、応用製品を通して市場に出て、社会に貢献している産業分野は非常に健全であると言えるでしょう。

 その一方で、高性能化や安全確保に必要不可欠な技術開発が、(戦時に異常にスピーディに安全無視で技術開発されてしまったなどにより)積み残され、置き去りにされてしまった核関連技術の分野では、70年以上未解決の高レベル放射性廃棄物問題を引き起こしていたりします。比喩的にいえば、腕力や胸の筋力ばかり発達して足腰がまるで脆弱なアスリートみたいなものかもしれません。これでは、いくら当座、産業応用ができてしまっていても、大変な危険と厄災をもたらす事故や解決の目途が立たない廃棄物問題により市民が脅威にさらされ続けることになりかねません。

 人工知能についても、同様の危険があるでしょうか? 「これ一つでどんな問題も解決できる万能のAI」などが本気で喧伝され、無理を承知で強引に現場に適用されたりしたら、あるいは、本当に整備すべきだったデータやロジックがなおざりにされ、当面は人間が担う方が精度面でもコスト面でも優位なところに予算が回らないような事態が生じるかもしれません。

 これは、AIが、生物さえも成し遂げなかった、自らの意思による進化、自己改造など引き起こす「シンギュラリティ」を心配しているのではありません。もっと手前で、従来の工学、産業応用の基本プロセス、発展段階を踏まえ、社会の重要な裏方としてAIが機能するのをすっ飛ばして、派手な役回りのみが持ち上げられ、結局その反動で失望が広がったり、普通の機械、技術と共通する身近な危険が放置されるのを恐れています。

 次回、シンギュラリティ以前の未熟なAIが人々に危害を加えないかを考えるため、ロボット工学3原則について取り上げようと思います。



posted by メタデータ at 00:00| Comment(0) | TrackBack(0) | semantic
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス:

ホームページアドレス:

コメント: [必須入力]

認証コード: [必須入力]


※画像の中の文字を半角で入力してください。
この記事へのトラックバックURL
http://blog.sakura.ne.jp/tb/169064879

この記事へのトラックバック